Algorithm parallelization for Multicore Architectures

Faster time-to-market for embedded multicore systems with less application development effort

FEATURES
Develop algorithms and tools to:

- Automatic parallelization of high-level Scilab algorithms to embedded MPSoCs
- Hide hardware complexity from the software developer
- Provide target-agnostic parallelization tools
- Iterative performance estimation and optimizations

RESULTS
Automatic conversion from Scilab to embedded C Code
Automatic parallelization to 4 processing cores
Minimization of sequential code
Equal Workload distribution
x2.4 application speedup

ALMA
www.alma-project.eu

Coordinator
Jürgen Becker (KIT)
Contact
becker@kit.edu
Budget
3,200,000 €
Start Date
01/09/2011
Duration
41 Months

Application Test Case
- IEEE 802.16e PHY Layer in NT x NR MIMO Configuration
- State-of-the-art WiMAX wireless communication

Scilab Input Language
- ALMA subset of the Scilab language
- Extended by
 - Variables declaration
 - Static types specification
 - Maximum size of vector/matrix data type definition

Matrix Frontend (MFE)
- Translate Scilab intermediate representation
- Generates static C code optimized for parallelization
- Constant and data type propagation

Iterative Optimization
- Simulation and Performance Analysis of intermediate results
- Performance metric feedback-loop

This work is co-funded by the European Union under the 7th Framework Programme under grant agreement ICT-287731.